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Abstract

Secure and verifiable aggregation is essential for ensuring the integrity and privacy of Federated Learning (FL).
Eltaras et al. (IEEE TIFS 2023) recently proposed an efficient protocol relying on auxiliary nodes to achieve these
goals while ostensibly managing client dropouts. In this work, we identify a critical cryptographic flaw in the
protocol’s verifiability mechanism. We demonstrate that the protocol fails to satisfy completeness in the presence of
dropouts, and honest clients are forced to reject correctly aggregated results with overwhelming probability whenever
a dropout occurs. To address this, we propose a lightweight modification that realigns the verification key with the
set of active participants. This fix restores the completeness of the verifiability guarantee without compromising the
protocol’s privacy properties.

1 Introduction

Federated learning (FL) enables training models over
decentralized data while keeping raw data local [7, 8].
In each round, a server collects client updates and ag-
gregates them into a new global model. This setting
raises two central concerns: privacy of individual up-
dates and integrity of the aggregate returned by a poten-
tially untrusted server [2, 9]. Secure aggregation proto-
cols address the first concern by ensuring that the server
learns only an aggregate (typically a sum) of client up-
dates [1,6,10], while recent work has sought verifiable ag-
gregation, where each client can check that the aggregate
is consistent with the set of contributed updates [4,5,11].

Eltaras et al. propose an “Efficient Verifiable Protocol
for Privacy-Preserving Aggregation in Federated Learn-
ing” (EVP) [3] that aims to provide both properties
in cross-silo FL using semi-trusted auxiliary organiza-
tions. Their Protocol 1 uses a single-masking mechanism
based on pairwise key agreement with auxiliary nodes to
achieve secure aggregation, and a lightweight linear “dou-
ble aggregation” mechanism for verifiability: each client
n computes a MAC of the form MACn = Kn + αxn on
its gradient xn, where Kn is a client-specific key and
α is a global scalar derived from the auxiliary nodes.
The server aggregates gradients and MACs, and each
client later checks whether the relation MAC = K + αX
holds, where X is the aggregate returned by the server
and K is a global key derived from auxiliary-node con-
tributions. The protocol is claimed to preserve privacy,
tolerate client dropouts, and allow each client to inde-
pendently verify the correctness of the aggregate.

We revisit EVP from a cryptographic perspective and
show that, as specified, its verifiability guarantee is in-
complete in the presence of dropouts. In the original
protocol, the global key K used in the verification equa-
tion is fixed during an early key-sharing round as a sum
of per-client keys over the user set U1 that participates in
that round. In contrast, the aggregate X and the aggre-
gated MAC are computed later over the (strict) subset
U2 ⊆ U1 of users that actually upload masked gradi-
ents in the round. We formally analyze this mismatch
and prove that, whenever at least one client drops out
between these two rounds, honest clients will reject the
correct aggregate with overwhelming probability, even if
the server behaves honestly. Thus EVP fails the stan-
dard completeness requirement for verifiable computa-
tion under the very dropout model it aims to support.

We then ask whether EVP can be repaired without
sacrificing its efficiency or privacy guarantees. Our sec-
ond contribution is a simple modification of Protocol 1
that preserves its architecture and threat model while
restoring completeness. The key idea is to decouple the
roles of the two key-agreement phases: auxiliary nodes
still distribute shares of the global scalar α early, but
the global key K is no longer bound to U1. Instead, af-
ter the server determines the actual contributor set U2,
each auxiliary node recomputes a node-level key Km as
a sum of pairwise keys over U2 and securely sends it to
users, who reconstruct K =

∑
m Km. This re-aligns the

verification key with the set of users whose gradients are
aggregated, leaving the masking layer unchanged and
incurring only a small number of additional symmetric
encryptions and decryptions. We show that the result-
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ing protocol satisfies completeness of verifiability even
under arbitrary dropouts between the key-sharing and
aggregation rounds.

2 Attack on the Verifiable Secure
Aggregation Protocol

In this section we first recall the verifiable secure aggre-
gation protocol of Eltaras et al. [3] (see Protocol 1 in
the Appendix), focusing on the parts that are relevant
for its verifiability guarantee. We then show that, in
the presence of user dropouts, the verification equation
used in the protocol can systematically fail even when
the server behaves honestly and computes the correct
aggregate. This reveals a violation of the completeness
aspect of verifiability: there exist honest executions in
which honest users always reject a correctly computed
result.

2.1 Overview of the Original Protocol

The protocol is executed between a cloud server, a set
U of users, and a set M of auxiliary nodes. Each user
n ∈ U holds a local gradient xn in a ring ZR. The
auxiliary nodes represent organizations (e.g., hospitals
or banks) and help to generate randomness and verifica-
tion keys, but do not contribute gradients. The protocol
is instantiated using a key-agreement primitive KA with
algorithms KA.gen and KA.agree, a symmetric authenti-
cated encryption scheme AE with algorithms AE.enc and
AE.dec, and a pseudorandom generator PRG used to de-
rive vector masks from shared seeds. All additions are
performed modulo R.

The goal of the protocol is twofold. First, the server
must be able to compute the aggregate X =

∑
n∈U2

xn

of the gradients of the users that participate in the cur-
rent training round (denoted U2). Second, each online
user should be able to verify that the aggregate returned
by the server is indeed the sum of the gradients of the
users who took part in the round. To this end, the pro-
tocol uses a single-masking mechanism for privacy and a
linear “double aggregation” mechanism for verifiability.

Setup and key advertising (Round 0). All par-
ties agree on a security parameter λ and public param-
eters pp ← KA.gen(λ). Each user and each auxiliary
node holds a private authenticated channel with the
server. In Round 0, every user n generates three key
pairs (pk1n, sk

1
n), (pk2n, sk

2
n), (pk3n, sk

3
n) ← KA.gen(pp)

and sends its public keys (pk1n, pk
2
n, pk

3
n) to the server.

Similarly, each auxiliary node m generates three key
pairs (pk1m, sk1m), (pk2m, sk2m), (pk3m, sk3m) and sends
(pk1m, pk2m, pk3m) to the server. Let U1 ⊆ U denote the

set of users whose keys are received in this round. The
server collects all public keys and broadcasts the list of
auxiliary-node keys {(pk1m, pk2m, pk3m)}m∈M to each user
in U1, and the list of user keys {(pk1n, pk2n, pk3n)}n∈U1

to
each auxiliary node in M .

Key sharing for verifiability (Round 1). Round 1
sets up the global verification keys and the per-user
keys that will be used to compute message authenti-
cation codes (MACs) on the gradients. Each auxiliary
node m ∈ M receives {(pk1n, pk2n, pk3n)}n∈U1

from the
server and, for every user n ∈ U1, computes a shared
verification subkey Kn,m ← KA.agree(sk3m, pk3n) . It
then sums these subkeys into a node-level verification
key Km ←

∑
n∈U1

Kn,m . Next, m samples a ran-
dom scalar αm in a field F (the “universal” key con-
tribution of node m). For each user n ∈ U1, the
auxiliary node derives an encryption key k

(1)
n,m ←

KA.agree(sk1m, pk1n) and sends to the server the cipher-
text ctn,m ← AE.enc

(
k
(1)
n,m, αm ∥Km

)
, where ∥ de-

notes concatenation. The server collects all ciphertexts
{ctn,m}n∈U1

and forwards, for each user n ∈ U1, the set
{ctn,m}m∈M to that user. Each user n ∈ U1 receives the
auxiliary nodes’ public keys and ciphertexts, and then,
for each m ∈M , computes k(1)n,m ← KA.agree(sk1n, pk

1
m)

and decrypts (αm,Km) ← AE.dec
(
k
(1)
n,m, ctn,m

)
. By

summing these values over all auxiliary nodes, every user
n ∈ U1 derives the global scalar

α ←
∑
m∈M

αm (1)

and the global verification key

K ←
∑
m∈M

Km . (2)

In addition, user n computes its own per-user verification
key as

Kn ←
∑
m∈M

Kn,m =
∑
m∈M

KA.agree(sk3n, pk
3
m) . (3)

For later use, it is convenient to rewrite (2) in terms of
the subkeys Kn,m. Since Km =

∑
n∈U1

Kn,m, we obtain

K =
∑
m∈M

Km =
∑
m∈M

∑
n∈U1

Kn,m =
∑
n∈U1

∑
m∈M

Kn,m

=
∑
n∈U1

Kn.

(4)

Thus, in the original protocol, the global key K is defined
as the sum of all per-user keys Kn over the user set U1.
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Masking and MAC computation (Round 2) In
Round 2, only a subset U2 ⊆ U1 of users is on-
line and sends masked gradients. For each auxiliary
node m ∈ M , each user n ∈ U2 computes a shared
seed sn,m ← KA.agree(sk2n, pk

2
m) and expands it via

the pseudorandom generator to obtain a mask vector
Pn,m ← PRG(sn,m) , with the same dimension as the
gradient xn. The user then masks its local gradient as

x̂n ← xn +
∑
m∈M

Pn,m (mod R). (5)

To enable verifiability, user n ∈ U2 uses its per-user
key Kn and the global scalar α to compute a linear MAC
on its unmasked gradient:

MACn ← Kn + α · xn (mod R). (6)

The user sends the pair (x̂n,MACn) to the server. After
some timeout, the server has collected contributions from
the online users U2 ⊆ U1 and broadcasts the list U2 (user
identifiers) to the auxiliary nodes.

Unmasking and aggregation (Round 3). In
Round 3, each auxiliary node m receives the set U2 of
online users and reconstructs the masks needed to un-
mask their contributions. For each n ∈ U2, it computes
sn,m ← KA.agree(sk2m, pk2n), Pn,m ← PRG(sn,m),
and sums them to obtain

Pm ←
∑
n∈U2

Pn,m. (7)

The auxiliary node sends Pm to the server. The server
receives all Pm values and computes the aggregate

X ←
∑
n∈U2

x̂n −
∑
m∈M

Pm (mod R). (8)

By construction, the masks cancel pairwise and we in-
deed have X =

∑
n∈U2

xn. At the same time, the server
aggregates the users’ MACs as

MAC ←
∑
n∈U2

MACn. (9)

The server broadcasts the pair (X,MAC) to all users that
are online in this round, denoted U3 ⊆ U2.

Verification (Round 4). In the final round, each on-
line user n ∈ U3 receives the aggregate X and the ag-
gregated MAC MAC. Using the global values α and K
computed in Round 1, the user recomputes

MAC′ ← K + α ·X (mod R) (10)

and accepts the server’s output if and only if

MAC′ = MAC. (11)

Intuitively, if the server modifies X while keeping MAC
unchanged, the linear relation (11) should be violated
with overwhelming probability, because the MACs are
computed using a secret linear functional determined by
α and the Kn. Eltaras et al. claim that this enables each
user to verify the correctness of the aggregated result
while the protocol “handles dropouts by default”.

2.2 Attack on Verifiability in the Pres-
ence of Dropouts

We now show that the above protocol does not always
satisfy the stated verifiability requirement. Specifically,
we consider executions in which some users drop out be-
tween Round 1 and Round 2, and we show that, even if
the server behaves honestly, the remaining users will re-
ject the correct aggregate because the verification equa-
tion (11) fails. This reveals a flaw in the way the global
key K is defined and used when dropouts occur.

Verifiability requirement. The security analysis in
[3] informally states that each participant should be able
to verify the correctness of the aggregated result re-
turned by the server, and that an honest server should
always be accepted by honest users. Formally, if the
server follows the protocol and computes X =

∑
n∈U2

xn

and MAC =
∑

n∈U2
MACn as specified, then every hon-

est user that completes Round 4 should accept. This is
the standard completeness condition for verifiable com-
putation.

Dropout scenario. Consider an execution in which
Round 0 and Round 1 complete with user set U1, and
the global values α and K are computed as in (1) and (4).
In Round 2, suppose that only a strict subset U2 ⊂ U1 of
users are online and send masked gradients and MACs.
This corresponds precisely to the dropout pattern that
the protocol claims to handle: users who do not send
gradients in the current round are excluded from the
aggregation.

Assume that all users in U2 and all auxiliary nodes
follow the protocol honestly, and that the server is honest
as well: it computes X and MAC exactly as in (8) and
(9), without tampering. We show that in this honest
execution, the verifying users in U3 ⊆ U2 do not accept,
except with negligible probability.

The value of K used in verification. Recall from
(4) that, in the original protocol, K is defined in terms
of U1, the users active in Round 1:

K =
∑
n∈U1

Kn =
∑
n∈U1

∑
m∈M

Kn,m. (12)
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This equality continues to hold in our dropout scenario,
because K is computed once in Round 1 and never up-
dated. In particular, the global key K used in the verifi-
cation equation (10) includes contributions from all users
in U1, including those who later drop out and are not
part of U2.

MACs and aggregate when the server is honest.
Let us expand the expression for the aggregated MAC
MAC when all parties behave honestly. For each user n ∈
U2, the MAC is MACn = Kn+αxn =

∑
m∈M Kn,m+

αxn. Summing over U2, we obtain

MAC =
∑
n∈U2

MACn =
∑
n∈U2

(Kn + αxn)

=
∑
n∈U2

∑
m∈M

Kn,m + α
∑
n∈U2

xn (mod R). (13)

By the correctness of the masking/unmasking procedure,
the aggregate X computed in (8) is

X =
∑
n∈U2

xn. (14)

Substituting (14) into (13), we can rewrite the aggre-
gated MAC as

MAC =
∑
n∈U2

∑
m∈M

Kn,m + αX (mod R). (15)

User-side verification computation. On the user
side, the verification procedure uses the global values α
and K fixed in Round 1, together with the aggregate X
received from the server, to compute

MAC′ = K + αX (mod R). (16)

Replacing K by its definition (12) and X by (14), we
obtain

MAC′ =

(∑
n∈U1

∑
m∈M

Kn,m

)
+ α

∑
n∈U2

xn (mod R)

=
∑
n∈U1

∑
m∈M

Kn,m + αX (mod R). (17)

Comparing MAC′ and MAC. We can now compare
MAC′ from (17) with MAC from (15) Taking the differ-

ence, we obtain

MAC′ −MAC (18)

=

(∑
n∈U1

∑
m∈M

Kn,m + αX

)
(19)

−

(∑
n∈U2

∑
m∈M

Kn,m + αX

)
(mod R)

=
∑
n∈U1

∑
m∈M

Kn,m −
∑
n∈U2

∑
m∈M

Kn,m (mod R)

=
∑

n∈U1\U2

∑
m∈M

Kn,m (mod R). (20)

Therefore, unless

∑
n∈U1\U2

∑
m∈M

Kn,m ≡ 0 (mod R), (21)

we have MAC′ ̸= MAC, and the verification equation
(11) fails. The sum in (20) ranges over all users who
participated in Round 1 (and contributed to K) but did
not participate in Round 2 (and therefore did not con-
tribute to MAC or X). Since the subkeys Kn,m are de-
rived via key agreement and modeled as pseudorandom
values in ZR, the probability that the non-trivial sum
(21) accidentally equals zero is negligible in the secu-
rity parameter. In a typical execution with at least one
dropout between Round 1 and Round 2, we therefore
have MAC′ ̸= MAC with overwhelming probability.

We have exhibited a class of honest executions—
namely, any execution in which at least one user drops
out between Round 1 and Round 2, while all remaining
users, auxiliary nodes, and the server behave honestly—
in which the verification condition (11) fails and all hon-
est users reject the correct aggregate. In other words, the
protocol as specified in [3] does not satisfy completeness
for verifiability under the very dropout model it claims
to handle: whenever U2 ⊂ U1, the global key K used
in the verification step is inconsistent with the set of
users whose gradients are actually aggregated, and the
equality MAC′ = MAC no longer characterizes correct
behavior of the server.

This attack does not rely on any adversarial action by
the users or the server; it arises purely from the inter-
action between the key-sharing phase (which defines K
over U1) and the aggregation phase (which operates over
U2). As a result, the protocol fails to achieve the stated
property that “each user can validate the result by veri-
fying” the equation MAC−K − αX = 0 in the presence
of dropouts.
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3 Fixing the Verifiable Secure Ag-
gregation Protocol

In this section we present a concrete modification of Pro-
tocol I in Eltaras et al. [3] (detailed in Protocol 2) that
restores completeness of the verifiability mechanism in
the presence of user dropouts, while preserving the orig-
inal privacy and efficiency goals. The key idea is simple:
instead of binding the global verification key K to the
user set U1 that participates in the key-sharing round,
we recompute and distribute K after the server has de-
termined the actual set of users U2 whose gradients are
aggregated. The global scalar α remains a universal key
shared in the first round, but the dependency of K on
users who may later drop out is removed.

We deliberately keep the structure and primitives of
the original protocol—a single-masking scheme for pri-
vacy, auxiliary nodes as organizations, and a lightweight
linear “double aggregation” for verifiability—and change
only the rounds that interact with the verification
keys. We use the same notation as in the original pa-
per: KA denotes a key-agreement primitive with al-
gorithms KA.gen and KA.agree, AE denotes a sym-
metric authenticated-encryption scheme with algorithms
AE.enc and AE.dec, and PRG is a pseudorandom genera-
tor used to expand seeds into vector masks. All additions
are modulo a ring ZR. We also follow the same conven-
tion for user sets: U0 for users that complete Round 0,
U1 ⊆ U0 for users that complete Round 1, U2 ⊆ U1 for
users that upload masked gradients, U3 ⊆ U2 for users
that receive the aggregate, and U4 ⊆ U3 for users that
actually perform the verification.

Setup and Round 0 (keys advertising). The setup
and key-advertising phase remain unchanged. All parties
agree on a security parameter λ and public parameters
pp← KA.gen(λ). Each user and each auxiliary node has
a private authenticated channel with the server.

In Round 0, every user n generates three key pairs
(pk1n, sk

1
n), (pk2n, sk

2
n), (pk3n, sk

3
n) ← KA.gen(pp) and

sends (pk1n, pk
2
n, pk

3
n) to the server. Each auxiliary

node m similarly generates (pk1m, sk1m), (pk2m, sk2m), and
(pk3m, sk3m) and sends (pk1m, pk2m, pk3m) to the server. Let
U0 be the set of users for which the server receives pub-
lic keys in this round, and M the set of auxiliary nodes.
The server then broadcasts to each user in U0 the list of
auxiliary-node public keys {(pk1m, pk2m, pk3m)}m∈M , and
to each auxiliary node in M the list of user public keys
{(pk1n, pk2n, pk3n)}n∈U0

.

Round 1: establishing the universal scalar α.
The first modification is to restrict Round 1 to the con-
struction of the universal scalar α, without committing

to a global verification key K. This round uses key pair
(pk1, sk1) for encrypted point-to-point communication
between users and auxiliary nodes, but postpones any
operation involving (pk3, sk3) to later rounds.

Each auxiliary node m receives {(pk1n, pk2n, pk3n)}n∈U0

from the server and samples a fresh random element αm

from a field F. For every user n ∈ U0, it derives a sym-
metric key k

(1)
n,m ← KA.agree(sk1m, pk1n) and computes a

ciphertext an,m ← AE.enc
(
k
(1)
n,m, αm

)
. The auxiliary

node sends the collection {an,m}n∈U0
to the server.

The server defines U1 ⊆ U0 as the set of users that
are online in this round and, for each n ∈ U1, collects
{an,m}m∈M and forwards them to user n.

Each user n ∈ U1 receives the auxiliary nodes’ public
keys and ciphertexts, and for each m ∈ M derives the
same symmetric key k

(1)
n,m ← KA.agree(sk1n, pk

1
m) and de-

crypts αm ← AE.dec(k
(1)
n,m, an,m). By summing these

local values, every user n ∈ U1 obtains the same global
scalar

α ←
∑
m∈M

αm . (22)

Note that, compared to the original protocol, users do
not learn any Km values in Round 1, and no global key
K is derived yet. The only global verification parameter
fixed at this stage is α, which is independent of user
dropouts in later rounds.

Round 2: masking and local MAC computation.
Round 2 retains the same masking mechanism as in the
original protocol and moves the computation of the per-
user verification keys Kn to this stage, restricted to users
that actually upload gradients.

Let U2 ⊆ U1 denote the subset of users that are on-
line in this round and wish to participate in the cur-
rent aggregation. Each such user n ∈ U2 uses the key
pair (pk2, sk2) to derive mask seeds with every auxil-
iary node: sn,m ← KA.agree(sk2n, pk

2
m) for all m ∈ M .

These seeds are expanded via the pseudorandom gener-
ator to obtain mask vectors Pn,m ← PRG(sn,m), with
the same dimension as the gradient xn. The masked
gradient is then computed as

x̂n ← xn +
∑
m∈M

Pn,m (mod R). (23)

For verifiability, each user n ∈ U2 now uses the verifi-
cation key pair (pk3, sk3) to compute its per-user verifi-
cation key

Kn ←
∑
m∈M

Kn,m =
∑
m∈M

KA.agree(sk3n, pk
3
m). (24)

This is identical to the per-user key in the original design,
but, crucially, it is now computed only for users that will
actually contribute gradients in this round.
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Given Kn and the global scalar α from (22), user n ∈
U2 computes its MAC on the unmasked gradient:

MACn ← Kn + α · xn (mod R). (25)

The user sends the pair (x̂n,MACn) to the server. After
a timeout, the server has received contributions from all
users in U2 and broadcasts the list U2 to the auxiliary
nodes, exactly as in the original protocol.

Round 3: unmasking and constructing a consis-
tent global key K. Round 3 is where the essential fix
is applied. The masking part remains unchanged: each
auxiliary node uses (pk2, sk2) to regenerate the masks
corresponding to the users in U2 and sends their sum
to the server. In addition, auxiliary nodes now recom-
pute their verification contributions only over U2, en-
crypt them for each user, and send them to the server
so that users can reconstruct a global verification key K
that matches the aggregated gradients.

More concretely, each auxiliary node m ∈ M re-
ceives the set U2 from the server. Using the key pair
(pk2, sk2), it computes for each n ∈ U2 the seed sn,m ←
KA.agree(sk2m, pk2n), Pn,m ← PRG(sn,m), and then
sums the masks to obtain

Pm ←
∑
n∈U2

Pn,m. (26)

In parallel, using the verification key pair (pk3, sk3),
auxiliary node m computes for each n ∈ U2 the verifi-
cation subkey Kn,m ← KA.agree(sk3m, pk3n) and aggre-
gates them into a node-level key restricted to U2:

Km ←
∑
n∈U2

Kn,m. (27)

Notice the difference from the original protocol: here
the sum is taken over U2, not U1. This is what re-
aligns the global key with the set of users whose gra-
dients are actually aggregated. For every user n ∈
U2, auxiliary node m then derives an encryption key
k
(1)
n,m ← KA.agree(sk1m, pk1n) and encrypts its node-level

key: ctn,m ← AE.enc
(
k
(1)
n,m, Km

)
. It sends Pm and the

set {ctn,m}n∈U2
to the server.

The server receives all {Pm, {ctn,m}n∈U2}m∈M and
computes the aggregate

X ←
∑
n∈U2

x̂n −
∑
m∈M

Pm (mod R), (28)

which still satisfies X =
∑

n∈U2
xn because the masks

cancel as before. It also computes the aggregated MAC

MAC ←
∑
n∈U2

MACn. (29)

Let U3 ⊆ U2 denote the users that are online at this
point. For each n ∈ U3, the server sends (X,MAC) to-
gether with the ciphertexts {ctn,m}m∈M .

Round 4: user-side reconstruction of K and
verification. In the final round, each user recon-
structs a global key K from the auxiliary-node contri-
butions corresponding to U2 and uses it together with
α to verify the aggregated result. Each user n ∈
U3 receives (X,MAC) and the ciphertexts {ctn,m}m∈M .
For every auxiliary node m ∈ M , user n computes
k
(1)
n,m ← KA.agree(sk1n, pk

1
m) and decrypts Km ←

AE.dec(k
(1)
n,m, ctn,m). By summing over all auxiliary

nodes, each user obtains

K ←
∑
m∈M

Km. (30)

Let U4 ⊆ U3 be the set of users that actually perform
the verification. For each n ∈ U4, the verification com-
putation is

MAC′ ← K + α ·X (mod R), (31)

and user n accepts X if and only if MAC′ = MAC.

Completeness under dropouts. The only semantic
difference from the original protocol is that the global
key K used in (31) is now defined as a function of U2,
the set of users that actually contributed gradients and
MACs in the current round. Using the symmetry of the
key agreement, we have Kn,m = KA.agree(sk3n, pk

3
m) =

KA.agree(sk3m, pk3n), and therefore, from (24) and (27),
Kn =

∑
m∈M Kn,m and Km =

∑
n∈U2

Kn,m.
Summing (27) over all auxiliary nodes yields

K =
∑
m∈M

Km =
∑
m∈M

∑
n∈U2

Kn,m (32)

=
∑
n∈U2

∑
m∈M

Kn,m =
∑
n∈U2

Kn. (33)

On the other hand, for an honest execution, (28) and
(29) give

X =
∑
n∈U2

xn, MAC =
∑
n∈U2

(
Kn+αxn

)
=
∑
n∈U2

Kn+αX.

Combining this with (33), we obtain MAC = K + αX
(mod R), so that MAC′ = MAC in (31) for all honest
users that complete Round 4, regardless of how many
users dropped out between Rounds 1 and 2. This re-
stores the completeness of the verification mechanism:
as long as the server aggregates the masked gradients
and MACs correctly over U2, all honest users that verify
will accept the result.

Importantly, the privacy guarantees and communica-
tion/computation costs of the original protocol are pre-
served. The masking structure and the sets of seeds
{sn,m} are unchanged, and the auxiliary nodes still only
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hold column-wise views of the mask matrix. The only
additional operations are a small number of symmet-
ric encryptions and decryptions to send Km to users in
Round 3 and reconstruct K in Round 4. Thus, the mod-
ified protocol retains the lightweight nature of the orig-
inal scheme while fixing the inconsistency between the
definition of K and the set of users whose gradients are
aggregated.

4 Conclusion

In this work, we identified a critical flaw in the ver-
ifiability mechanism of the "Efficient Verifiable Proto-
col" (EVP) by Eltaras et al., demonstrating that it fails
to satisfy the standard completeness requirement in the
presence of user dropouts. We showed that the proto-
col’s original design, which binds the global verification
key to the initial set of participants, causes honest users
to reject valid server aggregates whenever a client drops
out. To resolve this, we proposed a modification that
dynamically realigns the global verification key with the
set of active contributors during the unmasking phase.
Our formal analysis confirms that this fix restores robust
verifiability under arbitrary dropouts without sacrificing
the privacy guarantees.
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Protocol 1: Original Verifiable Secure Aggregation Protocol (Eltaras et al.)

Setup:

• Parties agree on security parameter λ and public parameters pp← KA.gen(λ).
• All users and auxiliary nodes have private authenticated channels with the server.

Round 0 (Key Advertisement):

• User n: Generates (pk1
n, sk

1
n), (pk

2
n, sk

2
n), (pk

3
n, sk

3
n)← KA.gen(pp) and sends public keys to server.

• Aux Node m: Generates (pk1
m, sk1

m), (pk2
m, sk2

m), (pk3
m, sk3

m)← KA.gen(pp) and sends public keys to server.
• Server:

- Collects keys from users (U1) and auxiliary nodes (M).

- Broadcasts {(pk1
m, pk2

m, pk3
m)}m∈M to users in U1.

- Broadcasts {(pk1
n, pk

2
n, pk

3
n)}n∈U1 to auxiliary nodes in M .

Round 1 (Key Sharing):

• Aux Node m:

- Computes shared keys Kn,m ← KA.agree(sk3
m, pk3

n) for all n ∈ U1.

- Computes node key Km ←
∑

n∈U1
Kn,m.

- Samples αm ← F.

- Encrypts ctn,m ← AE.enc(KA.agree(sk1
m, pk1

n), αm∥Km).

- Sends {ctn,m}n∈U1 to the server.

• User n:

- Decrypts α∥K ←
∑

m∈M AE.dec(KA.agree(sk1
n, pk

1
m), ctn,m).

- Computes personal key Kn ←
∑

m∈M KA.agree(sk3
n, pk

3
m).

• Server: Forwards ciphertexts {ctn,m} to respective users.

Round 2 (Masking Submission):

• User n:

- Derives masks sn,m ← KA.agree(sk2
n, pk

2
m).

- Masks gradient: x̂n ← xn +
∑

m∈M PRG(sn,m) (mod R).

- Computes MAC: MACn = Kn + α · xn (mod R).

- Sends x̂n and MACn to server.

• Server: Receives data from online users U2 ⊆ U1. Broadcasts U2 to auxiliary nodes.

Round 3 (Unmasking Aggregation):

• Aux Node m:

- Reconstructs masks for U2: Pn,m ← PRG(KA.agree(sk2
m, pk2

n)).

- Sums masks: Pm ←
∑

n∈U2
Pn,m. Sends Pm to server.

• Server:

- Aggregates gradients: X =
∑

n∈U2
x̂n −

∑
m∈M Pm (mod R).

- Aggregates MACs: MAC =
∑

n∈U2
MACn.

- Broadcasts (X,MAC) to users U3.

Round 4 (Verification):

• User n:

- Receives (X,MAC).

- Computes MAC′ = K + αX.

- Accepts if MAC′ = MAC.
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Protocol 2: Corrected Verifiable Secure Aggregation Protocol

Setup:

• All parties agree on security parameter λ and public parameters pp← KA.gen(λ).
• All users and auxiliary nodes have private authenticated channels with the server.

Round 0: Key Advertisement

• User n: Generates key pairs (pk1
n, sk

1
n), (pk

2
n, sk

2
n), (pk

3
n, sk

3
n)← KA.gen(pp) and sends public keys to the server.

• Auxiliary Node m: Generates key pairs (pk1
m, sk1

m), (pk2
m, sk2

m), (pk3
m, sk3

m)← KA.gen(pp) and sends public keys
to the server.

• Server:

– Collects keys from users (U0) and auxiliary nodes (M).

– Broadcasts {(pk1
m, pk2

m, pk3
m)}m∈M to all users in U0.

– Broadcasts {(pk1
n, pk

2
n, pk

3
n)}n∈U0 to all auxiliary nodes in M .

Round 1: Establishing Universal Scalar α

• Auxiliary Node m:

– Samples random αm ← F.

– For each n ∈ U0, computes an,m ← AE.enc(KA.agree(sk1
m, pk1

n), αm) and sends {an,m}n∈U0 to the server.

• Server: Forwards {an,m}m∈M to each online user n ∈ U1.
• User n (∈ U1):

– Decrypts αm ← AE.dec(KA.agree(sk1
n, pk

1
m), an,m).

– Computes global scalar α←
∑

m∈M αm.

Round 2: Masking and Gradient Submission

• User n (∈ U2):

– Derives shared seeds sn,m ← KA.agree(sk2
n, pk

2
m) and masks gradient: x̂n ← xn+

∑
m∈M PRG(sn,m) (mod R).

– Computes local verification key: Kn ←
∑

m∈M KA.agree(sk3
n, pk

3
m).

– Computes MAC: MACn ← Kn + α · xn (mod R).

– Sends (x̂n,MACn) to the server.

• Server: Receives contributions from U2. Broadcasts the identity set U2 to all auxiliary nodes.

Round 3: Unmasking and Key Alignment (The Fix)

• Auxiliary Node m:

– Reconstructs masks for U2: Pn,m ← PRG(KA.agree(sk2
m, pk2

n)). Computes sum Pm ←
∑

n∈U2
Pn,m.

– Key Realignment: For each n ∈ U2, computes verification subkey Kn,m ← KA.agree(sk3
m, pk3

n).

– Aggregates verification key over U2: Km ←
∑

n∈U2
Kn,m.

– Encrypts for users: ctn,m ← AE.enc(KA.agree(sk1
m, pk1

n),Km).

– Sends Pm and {ctn,m}n∈U2 to the server.

• Server:

– Aggregates result: X ←
∑

n∈U2
x̂n −

∑
m∈M Pm (mod R).

– Aggregates MACs: MAC←
∑

n∈U2
MACn.

– Broadcasts (X,MAC) and ciphertexts {ctn,m}m∈M to online users U3.

Round 4: Verification

• User n (∈ U4):

– Decrypts node keys: Km ← AE.dec(KA.agree(sk1
n, pk

1
m), ctn,m).

– Reconstructs global key: K ←
∑

m∈M Km.

– Computes MAC′ ← K + α ·X (mod R).

– Verification: Accepts aggregate X if and only if MAC′ = MAC.
9
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